Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vanessa E. de Oliveira, ${ }^{\text {a }}$ Renata Diniz, ${ }^{\text {a }}$ Bernardo L. Rodrigues ${ }^{\text {b }}$ and Luiz Fernando C. de Oliveira ${ }^{\text {a }}$
${ }^{\text {a }}$ Núcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry, Federal University of Juiz de Fora - Minas Gerais, 36036-900 Brazil, and ${ }^{\mathbf{b}}$ Institute of Physics of São Carlos, University of São Paulo, São Carlos 13560-970, Brazil

Correspondence e-mail:
renata.diniz@ufjf.edu.br

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.067$
$w R$ factor $=0.142$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ammonium dicyano(cyanoacetyl)methanide: one condensation product of malononitrile

The title compound, $\mathrm{NH}_{4}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}^{-}$, was obtained as a secondary product in a reaction of squaric acid and excess malononitrile (1:20). The crystal packing displays a wave-like arrangement of molecules parallel to b, in which anion layers are linked by medium-weak hydrogen bonds to the ammonium cation, giving rise to a three-dimensional network. The average $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{N}$ distances are 2.843 (2) and 3.025 (3) Å, respectively.

Comment

The weak cyanocarbon acid malononitrile is a versatile compound and very reactive. It is used as a reactant or reaction intermediate, since the methylene group and cyano groups can take part in condensation reactions to give a variety of addition products and heterocyclic compounds (Freeman, 1969). This compound has been used in substitution reactions with oxocarbon species, especially with the croconate ion $\left(\mathrm{C}_{5} \mathrm{O}_{5}{ }^{2-}\right)$, giving rise to the class of compounds denoted as croconate dyes, mainly the di-substitued product which is known as croconate violet, 3,5-bis(dicyanomethyl-ene)cyclopentane-1,2,4-trionate (Fatiadi, 1980; Diniz et al., 2006). Some crystal structures of self-condensation products of malononitrile have been described by Klewe, viz. potassium salts of 2-cyanomethyl-1,1,3,3-tetracyanopropene (Klewe, 1971a) and 1,1,3-tricyanopropanone (Klewe, 1971b), and 2-amino-1,1,3-tricyanopropene (Klewe, 1971c).

The title compound, (I), is isostructural to the potassium salt of 1,1,3-tricyanopropanone (Klewe, 1971b). The structure of (I) is illustrated in Fig. 1. The anion is almost planar except for one cyano group ($\mathrm{C} 1 / \mathrm{N} 1$), which lies out of the molecular plane, with a torsion angle of $10(1)^{\circ}$. The molecular plane is approximately perpendicular to the c axis, its normal subtending angles of 87.6 and 66.7° with the b and a axes, respectively. The $\mathrm{C}-\mathrm{C}$ bond distances [average 1.415 (3) \AA], except C2-C3 [1.522 (3) A], are smaller than standard C-C single bonds, which is indicative of delocalization of the anion negative charge. The CO and CN bonds are similar to those

Received 5 July 2006 Accepted 8 July 2006

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Crystal packing of (I), viewed along the c axis. Broken lines indicate hydrogen bonds.
observed in other condensation products of malononitrile (Klewe, 1971a,b,c), and $\mathrm{C}-\mathrm{C}-\mathrm{N}$ angles are near to 180° as expected (Table 1).

The ammonium cations are involved in two types of intermolecular hydrogen bonds to the anions (Table 2), and the average $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{N}$ distances are, respectively, 2.843 (2) and 3.025 (3) \AA. The crystal packing displays a wave-like arrangement of molecules parallel to b, in which anion layers are linked by medium-weak hydrogen bonds, giving rise to a three-dimensional network (Fig. 2).

Experimental

The title compound, which is a self-condensation product of malononitrile, was obtained as a secondary product of squaric acid and
excess malonotrile (1:20) in ethanol solution. The reaction was stirred under reflux at 363 K for two days. The solvent was removed at reduced pressure and the solid was chromatographed on silica gel 60 G (ethyl acetate/methanol 8:2). After slow solvent evaporation at room temperature of the first fraction, yellow single crystals suitable for X-ray diffraction analysis were obtained.

Crystal data

$\mathrm{H}_{4} \mathrm{~N}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}^{-}$

$$
Z=4
$$

$M_{r}=150.15$
Monoclinic, $P 2_{\mathrm{h}} / c$
$D_{x}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.3642$ (6) A
$b=12.0104$ (9) \AA
Mo K α radiation
$b=12.0104(9) \AA \AA$
$c=7.6033(4) \AA$
$\mu=0.10 \mathrm{~mm}^{-1}$
$\beta=101.790$ (4) ${ }^{\circ}$
$T=298$ (2) K
Prism, yellow
$0.30 \times 0.08 \times 0.08 \mathrm{~mm}$
$V=747.69$ (9) \AA^{3}

1707 independent reflections
1164 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.083$
$\theta_{\text {max }}=27.6^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.091 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \AA^{-3} \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.063(16)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 3$	$1.249(2)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.148(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.139(3)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.149(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.7(3)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$178.4(2)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$119.54(18)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 4$	$179.3(2)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$122.83(18)$		

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	1.10	1.93	$3.017(3)$	174
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\text {ii }}$	1.02	2.05	$2.869(2)$	135
$\mathrm{~N} 4-\mathrm{H} 4 C \cdots \mathrm{O} 1$	1.01	1.84	$2.817(2)$	163
N4-H4D $\mathrm{N}^{\text {iii }}$	1.03	2.19	$3.033(2)$	138
Symmetry codes:	(i)	$-x+1, y-\frac{1}{2},-z+\frac{1}{2} ;$	(ii) $x,-y+\frac{1}{2}, z-\frac{1}{2} ;$	(iii)
$x+1,-y+\frac{1}{2}, z-\frac{1}{2}$.				

C-bound H atoms were included in the riding-model approximation with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and a single $U_{\text {iso }}(\mathrm{H})$ was refined for this group. H atoms of the ammonium cation were located in a difference map, fixed in these positions and assigned the same isotropic displacement parameters for all H atoms; see Table 2 for bond distances.

Data collection: COLLECT (Hooft, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

organic papers

molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

The authors thank CNPq, CAPES, FAPESP and FAPEMIG (Brazilian agencies) for financial support.

References

Diniz, R., de Sá, L. R. V., Rodrigues, B. L., de Yoshida, M. I. \& Oliveira, L. F. C. (2006). Inorg. Chim. Acta, 359, 2296-2302

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fatiadi, A. J. (1980). J. Org. Chem. 45, 1338-1339.
Freeman, F. (1969). Chem. Rev. 69, 591-624.
Hooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands
Klewe, B. (1971a). Acta Chem. Scand. 25, 1975-1987.
Klewe, B. (1971b). Acta Chem. Scand. 25, 1988-1998.
Klewe, B. (1971c). Acta Chem. Scand. 25, 1998-2009.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

